
MicroLab, VLSI-13 (1/26)

JMM v1.4

VLSI Systems Design
Design Project: Practical Aspects

Overview
applying the “description-synthesis” design 
method in practice

Goal: You are able to master your own VHDL project. You 
have basic notions about HW/SW co-design.

I am a VHDL expert.
But how applying
in real live – for my MP3 player!



MicroLab, VLSI-13 (2/26)

JMM v1.4

Project Goal
Goal: 
design of an electronic system from specification 
down to ASIC/FPGA
Problem: 
one of the most difficult tasks in a VLSI project 
design is to find the starting design point
Basic Steps:
in order to proceed in a structured manner, you 
should perform the following steps

block diagram
HW/SW co-design (hardware/software co-design)
IP cores (intellectual property cores)

FSMD architecture model

VHDL coding & simulation

structured software design

C coding, compiling

hardware/software system simulation

synthesis, place & route

back-annotation & simulation (formal design verification)

chip test

hardware software        co-design

hardware software        co-design



MicroLab, VLSI-13 (3/26)

JMM v1.4

Initial System Design Steps
System design steps
1. identify your chip in the overall system
2. define the chip IO and group them to blocks 
3. identify functional units of your chip
4. identify the interconnection between your units

5. identify speed sensitive (HW) and control sensitive (SW) 
tasks

6. define the “intelligence” of each functional unit

7. identify IP cores
8. organize as much as possible IP cores (tools, core 

generators, old designs, internet)
9. update design if necessary according to available IP cores
10. define inter-process communication
11. define the interconnections between your units

In the classical HW/SW co-design approach, the 
design process is continued as long as possible 
independent of its implementation. HW/SW design 
units are identified at the very end of the design 
steps. In smaller designs, as it is in our case, the 
HW/SW co-design step is done in an early phase.

blo
ck

 di
ag

ram
HW

/S
W

 co
-d

es
ign

IP
 co

re
s



MicroLab, VLSI-13 (4/26)

JMM v1.4

Project MP3 Player: step 1
(block diagram)

Step 1: identify your chip in the overall system

USBUSB

Flash MemoryFlash Memory

MP3 DecoderMP3 Decoder

LCDLCD

PowerPower

KeyboardKeyboard

MP3 Player
ASIC/FPGA 
MP3 Player
ASIC/FPGA 

DACDAC



MicroLab, VLSI-13 (5/26)

JMM v1.4

Project MP3 Player: step 2-4
(block diagram)

Step 2: define the chip IO and group them to 
blocks 
Step 3: identify functional units of your chip
Step 4: find the interconnections between your 
units

USB
interface

power
management

Flash
interface

LCD
interface

Decoder
interface

DAC
interface

keyboard 
interface

main
control

I2
C 

int
er

fac
e

MP3 Player ASIC/FPGA

I2
S 

int
er

fac
e



MicroLab, VLSI-13 (6/26)

JMM v1.4

Project MP3 Player: step 5
(HW/SW Co-Design)

Step 5: identify speed and control sensitive tasks
Step 6: define the “intelligence” of each 
functional unit

USB
interface

power
management

Flash
interface

LCD
interface

Decoder
interface

DAC
interface

keyboard 
interface

main
control

MP3 Player ASIC/FPGA

speed sensitive

control sensitive

add “intelligence”

add “intelligence” ?

add “intelligence”

I2
C 

int
er

fac
e

I2
S 

int
er

fac
e



MicroLab, VLSI-13 (7/26)

JMM v1.4

Project MP3 Player: step 7-8
(Hardware Design)

Step 7: identify IP cores
Step 8: organize as much as possible IP cores 
(tools, core generator, old designs, internet)

USB
interface

power
management

Flash
interface

LCD
interface

Decoder
interface

keyboard 
interface

main
control

MP3 Player ASIC/FPGA

USB coreUSB core

PIC corePIC core

DAC
interface

I2
C 

int
er

fac
e

I2
S 

int
er

fac
e



MicroLab, VLSI-13 (8/26)

JMM v1.4

Project MP3 Player: step 9-11
(Hardware Design)

Step 9: update design if necessary according to 
available IP cores
Step 10: define inter-process communication
Step 11: define the interconnection between units

USB
interface

power
management

“intelligent”
flash

interface

LCD
interface

Decoder
interface

DAC
interface

“intelligent”
keyboard 
interface

main
control

“intelligent”
I2C

interface

MP3 Player ASIC/FPGA

USB coreUSB core

PIC corePIC core

Port A

Port C
Port B

Port D

“intelligent”
I2S

interface



MicroLab, VLSI-13 (9/26)

JMM v1.4

Hardware/Software Design Steps
Hardware design project steps:

I. imagine your chip working in the target system, identify 
and describe its basic functional units in a data-flow view

II. find the RTL structure of each of the above data-flow 
functions and update your block diagram by allocating your 
RTL structure to one or more functional units

III. fix in detail the operation of your functional units (local 
intelligence or data-path only) and add FSMs if required, 
fix the detailed interconnections between your units

IV. design all FSMs, define clock strategy, use colored data-
flow, be careful with the inter-process communications

V. VHDL coding of your RTL design
VI. test bench design
VII. simulate your VHDL design with test bench

FS
MD

 ar
ch

ite
ctu

re
 m

od
el

VH
DL

 co
din

g

Software design project steps:
I. design the software structure as learned in SW 

engineering courses
II. define the data structure
III. define the HW/SW communication

IV. develop the C code
V. compile & verify your C code

str
uc

tu
re

d 
so

ftw
are

 de
sig

n 
C 

co
din

g



MicroLab, VLSI-13 (10/26)

JMM v1.4

Project MP3 Player: step I
(Hardware design project steps)
Step I: imagine your chip working in the target 
system, identify and describe its basic functional 
units in a data-flow view

download MP3 song from host to flash 
memory (flow 1):

generate flash command, generate flash address
load byte from USB into register
use byte to execute ECC (Hamming code)
update flash address
store byte into flash
write ECC code after 512 bytes
generate write-to-flash after 512 bytes
use pipeline structure to speed up data transfer

USB
interface

power
management

“intelligent”
flash

interface

LCD
interface

Decoder
interface

DAC
interface

“intelligent”
keyboard 
interface

main
control

“intel.”
I2C inter.

MP3 Player ASIC/FPGA

USB coreUSB core

PIC corePIC core

Port A

Port C
Port B Port D

“intel.”
I2S inter.



MicroLab, VLSI-13 (11/26)

JMM v1.4

Project MP3 Player: step II
(hardware design project steps) 
Step II: find the RTL structure of each of the 
previous data-flow functions and update your 
block diagram by allocating your RTL 
structure to one or more functional units

download MP3 song from host to flash 
memory (flow 1):

clk

enable

in  out

clk

enable

in  out
ECC 
generator

USB
interface

Flash
interface

pads to
flash mem

muxsel

clk

in  out
enable
count

command
register



MicroLab, VLSI-13 (12/26)

JMM v1.4

power
management

“intelligent”
lash

interface

“intelligent”
keyboard 
interface

“intelligent”
I2C

interface

MP3 Player ASIC/FPGA

USB coreUSB core

PIC corePIC core

Port A

Port C
Port B

Port D

Project MP3 Player: step III
(hardware design project steps) 

Step III: fix in detail the function of your 
functional units (local intelligence or data-path 
only) and add FSMs if required, fix the detailed 
interconnections between your units

“intelligent” 
keyboard 

(FSMD architecture)

“intelligent”
LCD interface

(FSMD architecture)

Software
C Code

Hardware
(IP core)

“intelligent” 
Flash & I2S interface
(FSMD architecture)



MicroLab, VLSI-13 (13/26)

JMM v1.4

Project MP3 Player: step IVa
Step IVa: design all FSMs, define clock strategy, use 
colored data-flow, be careful with the inter-process 
communications 

Clock strategy: Rising edge for data-paths, falling edge for IP 
cores and FSMs. All handshake signals between FSMDs and IP 
cores on falling edge.
Colors: make a lot of copies of your RTL data path
Colors: for each data-flow step, color the old active data paths 
leaving a register blue, the new active data-paths leaving a 
register green, and data-paths treated with a combinatorial 
function in the corresponding dark color. Active control signals
and its blocks are orange. All other data-signals are red. Red 
signals are dominant. Be sure that no red signals enter a FSM, 
and no darkened or red signals attack asynchronous set/reset of 
FFs.

clk

enable

in  out

clk

enable

in  out
ECC 
generator

pads to
flash mem

muxsel

clk

in  out
enable
count

command
register



MicroLab, VLSI-13 (14/26)

JMM v1.4

Project MP3 Player: step IVb
Step IVb: design all FSMs, define clock strategy, use 
colored data-flow, be careful with the inter-process 
communications 

we decide to use 3 different FSMs in addition to the ones 
present in IP cores
the PIC processor core is the main unit, which 
communicates with all other FSMD or core units, thus use 
inter-process communication. There is no communication 
in-between the other units. 

request

data data valid

acknowledge

process 1

process 2

“intelligent” 
keyboard 
(FSMD)

“intelligent”
LCD interface

(FSMD)

“intelligent” 
Flash & I2S interface 

(FSMD)

Software
C Code

Hardware
(IP core)



MicroLab, VLSI-13 (15/26)

JMM v1.4

Project MP3 Player: step V

Step V: VHDL coding of your RTL design
use a processes for data-path manipulation and its 
succeeding register
use 2 processes for a FSM:

one process for transition table (VHDL case)
one process for next state (state register)
continuous assignment for output function

clk

enable

in  out

clk

enable

in  out
ECC 
generator

pads to
flash mem

muxsel

clk

in  out
enable
count

command
register

Process 1

Process 2



MicroLab, VLSI-13 (16/26)

JMM v1.4

Project MP3 Player: step VI

Step VI: test bench design
the design of a test bench is one of the most time 
consuming and important tasks. A test bench will be 
re-used several times during the different design 
steps as well as for chip test (have a look at vlsi21)

response
generation

and
verification

control
and 

stimulus
generation

Test Bench

device under test (DUT)



MicroLab, VLSI-13 (17/26)

JMM v1.4

Final System Design Steps
Hardware design project steps:

12. system test bench design
13. hardware/software system simulation with test bench

14. synthesis of logic level design
15. simulation of logic level with test bench
16. place & route your design for target technology

17. back annotation and simulation with test bench
18. (formal design verification)

19. chip fabrication

20. chip test with test bench
21. in system test

sy
nt

he
sis

pla
ce

 an
d r

ou
te

ve
rif

y
te

st
sy

ste
m

sim
ula

tio
n



MicroLab, VLSI-13 (18/26)

JMM v1.4

Block Diagram of a General System

A general system is composed of three elements:
user
algorithm
plant

all three items interact with each other resulting in 
2 closed loops
The closed loops may have real-time constraints



MicroLab, VLSI-13 (19/26)

JMM v1.4

GECKO Design Environment

Design entry:
C-code software
manual RTL hardware
algorithms

All three design entry elements will be converted to 
VHDL and thus can be implemented into a SoC



MicroLab, VLSI-13 (20/26)

JMM v1.4

SoC Design Methodology

The specify-explore-refine design flow is extended 
to a specify-explore-refine-prototype-analyze 
design flow for SoC designs with real-time 
constraints



MicroLab, VLSI-13 (21/26)

JMM v1.4

SoC with GECKO Environment

An SoC design using the GECKO system supports 
the two chip approach

GECKO main board for digital part
application specific GECKO expansion board for analog, 
power, HF part

Gecko main board

Software

Microprocessor
IP Core

Real Time
Signal Processing
Hardware

Hardware
IP blocks

Analog
blocks

Power
blocks

Sensor

SoC



MicroLab, VLSI-13 (22/26)

JMM v1.4

The GECKO system

GECKO Interface Driver

GECKO main board

GECKO main board n top if an 
application specific
GECKO expansion board
(RFID reader application, 2 W
13.56MHz RF power)



MicroLab, VLSI-13 (23/26)

JMM v1.4

Hardware-in-the-Loop

to iteratively improve a design fast prototyping and 
data analysis steps are necessary
difficult to model plants are preferably not be 
modeled and directly included in the simulation 
loop
variable cut between simulation and hardware
respect real-time constraints

hardware-in-the-
software-loop

hardware-in-the-loop



MicroLab, VLSI-13 (24/26)

JMM v1.4

Homework: MyProject

define your own project
plan the development and use the presented design 
methodology
prepare the presentation of your project, be sure 
you do have all the necessary documentation for the 
discussed design steps

MyProject 2004: speed controlled dc motor
Matlab/Simulink with speed controller
GECKO main board with dc-motor electronics
use hardware-in-the-simulation-loop

Implementation constraints:
microprocessor with C code for „administrative“ tasks
pulse wide modulation for driving dc motor (hardware)
A/B signal encoder for speed sensing (hardware)
driving circuitry (expansion board) as simple as possible

Technical data:
dc motor has 6000 turns/minute at 5V
speed sensor has 12 pulses per turn



MicroLab, VLSI-13 (25/26)

JMM v1.4

Exercises: SoC #1

CAD Ex55x: PWM Project (difficulty: easy; time: 
medium): Design of a pulse width modulator 
(PWM) controlling a DC-motor. The PWM shall 
have an microprocessor interface. The VHDL design 
is simulated, compiled and implemented into an 
FPGA and is supposed to drive small dc motor.

CAD Ex550: (difficulty: easy): Design the VHDL 
code of the PWM element. The btrdy and ack
signals are handshake signals for communication 
with the microprocessor data bus. A value 0 on the 
8-bit data bus will switch off the dc motor 
(pOut=‘1‘), a non-zero value will generate a PWM 
signal with an on-time of (data/256)*100% of a 
period. Analyze the VHDL syntax with gvan.

PWM
pOut

data

btrdy
ack

8

clk

rst

PWM period

(data/266) * 100%



MicroLab, VLSI-13 (26/26)

JMM v1.4

Exercises: SoC #2

CAD Ex551: (difficulty: easy): Design a test-bench 
for the PWM. Simulate your VHDL code with the 
Synopsis VSS simulator and use your test-bench  
to verify its correct behavior.
 Result: see exercise Ex451 on the MicroLab web

CAD Ex552 (difficulty: easy): Synthesize the PWM 
VHDL code into a gate level schematic for a Xilinx
FPGA target technology. Connect your VHDL 
signals to the correct FPGA pins. Perform the 
place&route of the logic elements. 
 Result: see exercise Ex452 on the MicroLab web

CAD Ex553 (difficulty: easy): Download your PWM 
circuit into an FPGA and and applying different 
PWM values to your circuit by the GECKO User 
Interface tool. Use an oscilloscope to verify its 
correct output behavior.  This exercise has to be 
done in MicroLab, using the GECKO system.
 Result: see exercise Ex453 on the MicroLab web


