VLS| Systems Design

Design Project: Practical Aspects

| am a VHDL expert.
But how applying
in real live — for my MP3 player!

Overview
applying the “description-synthesis” design
method in practice

Goal: You are able to master your own VHDL project. You
have basic notions about HW/SW co-design.

Project Goal
* Goal:

design of an electronic system from specification

down to ASIC/FPGA
¢ Problem:

one of the most difficult tasks in a VLS| project
design is to find the starting design point

¢ Bagic Steps:

in order to proceed in a structured manner, you
should perform the following steps

¢ block diagram
¢ HW/SW co-design (hardware/software co-design)
¢ |P cores (intellectual property cores)

/ hardware s'oﬁ‘warx co-design

¢ FSMD architecture model * structured software design

¢ VHDL coding & simulation ¢ C coding, compiling
\éardwre software / co-design

¢ hardware/software system simulation
* synthesis, place & route

¢ hack-annotation & cimulation (formal decian verification)

*

block diagram

HW/SW co-design

IP cores

A

Initial System Design Steps

System design steps

(1.

*

identify your chip in the overall system

define the chip 10 and group them to blocks
identify functional units of your chip

identify the interconnection between your units

. identify speed sensitive (HW) and control sensitive (SW)

tagks

. define the “intelligence” of each functional unit

identify IP cores

organize as much as possible P cores (tools, core
generators, old designs, internet)

. update design if necessary according to available IP cores
10. define inter-process communication
_ 11. define the interconnections between your units

In the classical HW/SW co-design approach, the
design process is continued as long as possible
independent of its implementation. HW/SW design
units are identified at the very end of the design
steps. In smaller designs, as it is in our case, the
HW/SW co-design step is done in an early phase.

Project MP3 Player: step 1
(block diagram)

¢ Step 1: identify your chip in the overall system

use LCD

MP3 Player
ASIC/FPGA

Keyboard MP3 Decoder

i

I

o

Power ‘ Flagh Memoryl DAC

Project MP3 Player: step 2-4

(block diagram)

¢ Step 2: define the chip 10 and group them to

blocks

¢ Step 3: identify functional units of your chip

¢ Step 4: find the interconnections between your

units
MP3 Player ASIC/FPGA
power main —’_r; 1) I N
management control interface |
A \ g
/ / \\ |
N keyboard 7 Decod <
/ interface :> in:::fai: :V'\ =
\ -\ \ :
usB Flagh DAC |\ =
1/ interface _l/ interface _> interface [<

nls
=< =

Project MP3 Player: step 5
(HW/SW Co-Design)

¢ Step 5: identify speed and control sensitive tasks

¢ Step 6: define the “intelligence” of each
functional unit

add “intelligence” ?
control sensitive \

MP3 Player ASIC/FPGA
power min % LCD
management control — interface
—— N\ o
add\”infelligence" -\ \\/ :g
T\\ keyboard i & Decod E
/ interface / \:> in:::fai: :V'\ = >
\
: N Y
/ USB. N Flash DAC E >
|\ =
{\ interface /| interface ——> interface [KQ
I C
i\' /

speed sensitive add “intelligence”

Project MP3 Player: step 7-8
(Hardware Design)

¢ Step 7: identify IP cores

¢ Step 8: organize as much as possible |P cores
(tools, core generator, old designs, internet)

MP3 Player ASIC/FPGA
FPM ol wp)

power . ~~~main__ ;_‘> int
management control
/7 A 7= —~——a @
Decoder | L &
L/ / \ = interface ' 2
N keyboard / o
/ interface > \ = >
B core | A .
\ <
use Flash DAC | \[E
interface 1/ interface [4‘> interface g >

~— — ST
-

Project MP3 Player: step 9-11
(Hardware Design)

¢ Step 9: update design if necessary according to
available IP cores

¢ Step 10: define inter-process communication
¢ Step 11: define the interconnection between units

MP3 Player ASIC/FP6A _——
(—PI¢ core oo ;
power . i interface _|—=
management control
~ ot Decoder
/ \ interface |—
“intelligent”
\ keyboard Port DAC
/| interface intortace —>
Port B r
B core L (Pt c ort
USB r\”inielligenf" I ‘intelligent| |“intelligent"
interface /| flash 128 2t >
interface interface | | interface
~———— T
= =

N

Hardware/Software Design Steps

¢ Hardware design project steps:
(1. imagine your chip working in the target system, identify

_ and describe its basic functional units in a data-flow view
'g ll. find the RTL structure of each of the above data-flow
e functions and update your block diagram by allocating your
3 < RTL structure to one or more functional units
€ | Nl fixin detail the operation of your functional units (local
= intelligence or data-path only) and add FSMs if required,
2 fix the detailed interconnections between your units

IV. design all FSMs, define clock strategy, use colored data-

\ flow, be careful with the inter-process communications

V. VHDL coding of your RTL design
VI. test bench design
VIIl. simulate your VHDL design with test bench

VHDL coding
/_H

¢ Software design project steps:
(1 design the software structure as learned in SW
engineering courses

Il define the data structure
lIl. define the HW/SW communication

structured
software design
A

-

IV. develop the C code
V. combpile & verifv vour C code

oding

) ¢

*

Project MP3 Player: step [
(Hardware design project steps)

Step I: imagine your chip working in the target
system, identify and describe its basic functional
units in a data-flow view

* download MP3 song from host to flagh
memory (flow 1):

v’ generate flash command, generate flash address
load byte from USB into register

use byte to execute ECC (Hamming code)
update flash address

store byte into flash

write ECC code after 512 bytes

generate write-to-flash after 512 bytes

use pipeline structure to speed up data transfer

MP3 Player ASIC/F
(il ED
power |

t control
managemen |

] Decoder

e . " interface :>
intelligent .

Ej keyboard Port A}

DAC
interface interface —

Port B — (o
B cor, Dort C Pﬂ)

‘intelligent’ @
- .gffs > flash “intel.” || “intel.” H=
Intertace interface 128 inter] |12C inter,

=

AN NN VRN

(\

[
1 1

Project MP3 Player: step I/
(hardware design project steps)

¢ Step ll: find the RTL structure of each of the
previous data-flow functions and update your
block diagram by allocating your RTL
structure to one or more functional units

* download MP3 song from host to flagh
memory (flow 1):

—count
Kenable
/ in out
—>elk
—lenable —lenable command
J\ in out :fn‘iraior in out register
-/
—> ¢elk — elk /@
sel mux
) USB |\ Flash
7| interface [Vjnterfac ﬁ
J E pads to

flash mem

Project MP3 Player: step Ill
(hardware design project steps)

* Step lll: fix in detail the function of your
functional units (local intelligence or data-path

only) and add FSMs if required, fix the detailed

interconnections between your units

MP3 Player ASIC/FPGA
(PIC core >
power

management

Software
C Code

[

“intelligent”
keyboard Port A

\Wrchifecfure / —

-P”B v
Port C B

B core

=
Hardware “intelligent”

“intelligent”)
LCD interface

[:
Flash & 128 interface
(1P core) (FSMD architecture)

FSMD architecture
A <

- = VvV

Project MP3 Player: step [Va

+ Step [Va: design all FSMs, define clock strategy, use
colored data-flow, be careful with the inter-process
communications

¢ (lock strategy: Rising edge for dafa-rafhs, falling edge for IP
cores and FSMs. All aandshake signals between FSMDs and |P

cores on falling edge.
* Colors: make a lot of copies of your RTL data path

* Colors: for each data-flow step, color the old active data paths
leaving a register blue, the new active data-paths leaving a
register green, and data-paths treated with a combinatorial
function in the corresponding dark color. Active control signals
and its blocks are orange. Aﬁ other data-signals are red. Red
signals are dominant. Be sure that no red signals enter a FSM,
and no darkened or red signals attack asynchronous set/reset of

FFs.

count
enable

in oufl

> elk |

| SN~ |

" |enable ECC enable command
|j‘> in outl__)xgenerator in out register

T elk | —t elk | i/ \/@

sel mux

v

Project MP3 Player: step IVb

+ Step IVb: design all FSMs, define clock strategy, use
colored data-flow, be careful with the inter-process
communications

+ we decide to use 3 different FSMs in addition to the ones
present in |P cores

¢ the PIC processor core is the main unit, which
communicates with all other FSMD or core units, thus use
inter-process communication. There is no communication

in-between the other units.
Software
C Code

ardwart intelligent’
Flash & 128 interf:

(FSMD)

intellige
keyboard
FSMD

intelligent
LCD interface
(FSMD)

request L P

process 1

acknowledge fv
rocess 2 -
4 data data valid S

Project MP3 Player: step V

+ Step V: VHDL coding of your RTL design

* use a processes for data-path manipulation and its
succeeding register

* use 2 processes for a FSM:

* one process for transition table (VHDL case)

* one process for next state (state register)

¢ continuous assignment for output function

<5

enable

in out

> elk

count
enable

in out

> elk

ECC

generator

enable

in out

command
register

flash mem

Project MP3 Player: step VI

¢ Step VI: test bench design

the design of a test bench is one of the most time
consuming and important tagks. A test bench will be
re-used several times during the different design
steps as well as for chip test (have a look at visi2t)

Test Bench
control response
and generation
stimulus and
generation y verification
\/

device under test (DUT)

*

verify
—
=

a—hy
©

test
—
NN
= o

5 { 12
E =S
2F L
£ (14
2T~ 15
=£ L.

Final System Design Steps

Hardware design project steps:

system test bench design
hardware/software system simulation with test bench

synthesis of logic level design
simulation of logic level with test bench

place & route your design for target technology

back annotation and simulation with test bench
(formal design verification)

chip fabrication

. chip test with test bench

in system test

Block Diagram of 2 General System

* A general system is composed of three elements:
¢ user
* algorithm
* plant

* all three items interact with each other resulting in
2 closed loops

¢ The closed loops may have real-time constraints

User
Control Information
Algorithm
- sighal processing
- control
Plant
- sensor

- actuator

GECKO Design Environment

* Design entry:
* (-code software
* manual RTL hardware
* algorithms

¢ All three design entry elements will be converted to
VHDL and thus can be implemented into a SoC

General Purpose Real-Time HW/SW CO-Design Environment

Hardware Design

Control Flow Design
(register transfer logic)

(microprocessor design
environement: PIC)

Alghorithm Design
(Matlab / Simulink)

Algorithm-Compiler C-Compiler (Microchip)
VHDL model of SoC

- VHDL model of main board
- IP core library

Data Analysis

Synthesis (Synopsys)
Place & Route (Alliance)

UsSB
(RS232)
interface
configuration f
EEPROM = g50C FPGA
- Algorithm
data acquisition = - ROM/RAM
BRAM - IP cores
1
LCD display
(optional)

application specific
analog / digital

- AD / DA converter
- drivers

- Sensors

- etc

System-on-Chip
Main Board

power supply

Expansion Board

Sol Design Methodology

* The specify-explore-refine design flow is extended
to a specify-explore-refine-prototype-analyze
design flow for SoC designs with real-time
constraints

specify
System Specification

explore
System Co-Design

refine
Algorithm Improvement

analyse

Signal & Data Analysis

prototype
Real-Time Verification

implement
Final SoC Design

1

Sol with GECKO Environment

* An SoC design using the GECKO system supports
the two chip approach

¢ GECKO main board for digital part

* application specific GECKO expansion board for analog,
power, HF part

Gecko main board

Real Time
Software . .
Signal Processing
Hardware
Microprocessor
IP Core Hardware
IP blocks
Power Analog Sensor
blocks blocks

¥ SoC

The GECKO system

- Programiing
il FP34 SPARTANZ 100
[GECKONERAMPLE BIT Browss| Frogram

Microlab PICTECTA Core

GECKO Interface Driver

[CARECKTMEAMPLE HER Browse| Program
[Reader | | Automatic Measure
Messure Bass Mame
EAS Capture
| Browse
SELECT | WRITE | HaLT
USREAD | SREAD |RSTOUIET IHET 0T iz =
[~ Awerag

I DeltaX [em] =

GECKO main board

GECKO main board n top if an
application specific

GECKO expansion board
(RFID reader application, 2 W
13.56MHz RF power)

Hardware-in-the-Loop

* to iteratively improve a design fast prototyping and
data analysis steps are necessary

¢ difficult to model plants are preferably not be
modeled and directly included in the simulation
loop

¢ variable cut between simulation and hardware
* respect real-time constraints

User
r_ ‘-\ User

{- parameter gatg analysisf===============-
control T

l
Model k) - ./ hardware-in-the-loop

(— Algorlthm,.\

control signal processing ‘

Model/Simulink

actuato rs sensors

Gecko
hardware hardware-in-the- realtime
software-loop
Plant

Homework: MyProject

¢ define your own project

¢ plan the development and use the presented design
methodology

* prepare the presentation of your project, be sure
you do have all the necessary documentation for the
discussed design steps

¢ MyProject 2004: speed controlled de motor
¢ Matlab/Simulink with speed controller
¢ GECKO main board with dc-motor electronics
* use hardware-in-the-simulation-loop

* |mplementation constraints:
* microprocessor with C code for ,administrative” tasks
* pulse wide modulation for driving dc motor (hardware)
* A/B signal encoder for speed sensing (hardware)
¢ driving circuitry (expansion board) as simple as possible

¢ Technical data:
* dc motor has 6000 turns/minute at 5V
* speed sensor has 12 pulses per turn

Exercises: Sol #1

¢ CAD Ex55x: PWM Project (difficulty: easy; time:

medium): Design of a pulse width modulator
(PWM) controlling a DC-motor. The PWM shall
have an microprocessor interface. The VHDL design
is simulated, compiled and implemented into an
FPGA and is supposed to drive small de motor.

CAD Ex550: (difficulty: easy): Design the VHDL
code of the PWM element. The btrdy and ack
signals are handshake signals for communication
with the microprocessor data bus. A value O on the
8-bit data bus will switch off the de motor
(pOut="1’), a non-zero value will generate a PWM
signal with an on-time of (data/256)*100% of a
period. Analyze the VHDL syntax with gvan.

__ldata/266) * 100%

btrdy —— pOut

ack «— PWM -,

data ll PWM period
ek —

rst

Exercises: Sol #2

* CAD Ex551: (difficulty: easy): Design a test-bench
for the PWM. Simulate your VHDL code with the
Synopsis VSS simulator and use your test-bench
to verify its correct behavior.

Result: see exercise Ex451 on the MicroLab web

¢ CAD Ex552 (difficulty: easy): Synthesize the PWM
VHDL code into a gate level schematic for a Xilinx
FPGA target technology. Connect your VHDL
signals to the correct FPGA pins. Perform the
place&route of the logic elements.

Result: see exercise Ex452 on the Microlab web

* CAD Ex553 (difficulty: easy): Download your PWM
circuit into an FPGA and and apKIyin different
PWM values to your circuit by the chKO User
Interface tool. Use an oscilloscope to verify its
correct output behavior. This exercise has to be
done in Microlab, using the GECKO system.

Result: see exercise Ex453 on the MicroLab web

